

In-service inspection of welds in atmospheric ammonia storage tanks

Ole Nørrekær Mortensen Advanced NDT Global

Ammonia storage tank design

- "Cup in a Tank" is a double wall ammonia storage tank
 - Designed with an insulated outer steel tank and an open inner steel tank holding the liquid ammonia
 - The annular space between the outer and inner tank is filled with ammonia vapour

NH₃ – Stress Corrosion Cracking (SCC)

- Ammonia Stress Corrosion Cracking (NH₃-SCC) is the damage mechanism that is a threat to the mechanical integrity of the tank
 - Liquid ammonia in the presence of oxygen can cause NH₃-SCC in carbon steel
- NH₃-SCC occurs at the internal surface of the inner tank
 - General phenomenon that can occur on all weld seam areas, driven by environmental conditions (oxygen and water content) and residual stress
 - Cracks can be parallel and transversal to the welds

NH₃ – Stress Corrosion Cracking

- NH₃-SCC initiation requires high residual stress levels
- NH₃-SCC depends on the water content and the oxygen concentration
 - NH₃-SCC initiation requires the presence of oxygen
 - The presence of water inhibits the formation and growth of NH₃-SCC

Benefits of non-intrusive inspection

- Tank decommissioning and re-commissioning are critical phases in the formation of cracks: potential for increased oxygen level inside the tank
- Non-intrusive inspection advantages
 - It does not affect the integrity of the tank (avoiding the negative effect of opening the tank for internal inspection, which causes thermal stress and allows the ingress of oxygen)
 - It is less hazardous to carry out than the internal inspection (dangerous operations like emptying and filling up the tank are not required)
 - It may be carried out more regularly than traditional internal inspection

Benefits of non-intrusive inspection

FORCE

- European Fertilizer Manufactures Association (EFMA, nowadays called Fertilizer Europe, FE) guidelines allow for non-intrusive inspection of ammonia storage tanks provided that
 - Risk Based Inspection assessment places the tank in the inspection frequency area of at least 10 years: tank cannot be in the High risk (red) area of the risk matrix
 - The used NDT technique is able to detect and characterize cracks below the calculated maximum tolerable defect

Selection of NDT technique

- Selected NDT technique has to be able to
 - Detect cracks with dimensions less than the calculated maximum allowable defect sizes
 - Detect and determine the size of cracks which can run both parallel and perpendicular to the weld
- Ultrasound technique is chosen, with
 - Two sets of shear wave probes
 - One set perpendicular to the weld
 - One set in a small skewed angle to the weld
 - Time Of Flight Diffraction (TOFD) probes for sizing of cracks

Automated ultrasonic inspection

• Inspection robot

- All materials have been tested to ensure they can withstand ammonia atmosphere and low temperature
- Designed as one enclosed unit connected with an umbilical cable (optical fiber for communication)
- It runs on magnetic wheels
- It is fitted with cleaning brush and cameras
- Ultrasound probes installed for detection and sizing of cracks
- Remote controlled deployment tool developed for placing the robot inside the outer tank wall (on the external surface of the inner tank wall)

Preparation for Inspection

- Ground foundation for habitat
- Placing habitat with platforms and scaffolding
- Removal of insulation from the tank manhole and cleaning of the cover
- Installation and alignment of the habitat
- Sealing around manhole
- Nitrogen supply for flushing of habitat and equipment
- Connection of oxygen analyzer
- Preparation for gas divers (fresh air supply and water supply for washing ammonia off)
- Placing container with electronics and glycol supply
- Placing container with control room

Habitat in position at outer manhole

Inspection execution

- Inspection is carried out by a team of specialists consisting of:
 - NDT technicians
 - Mechanics
 - Fire fighters especially trained for working under toxic atmosphere
- Inspection sequence
 - Ammonia tank is opened in nitrogen atmosphere
 - The deployment tool with the remote controlled hatch is mounted
 - Hatch is closed
 - The atmosphere is normalized and the remaining equipment is mounted and tested
 - The habitat is filled with nitrogen and the inspection robot is placed on the external surface of the inner tank wall ("cup") with the deployment tool
 - Hatch with cable reel is closed and the inspection begins

Inspection execution

Inspection execution

- All inspection data are digitally stored
 - They can be retrieved at a later date for re-evaluation or comparison with new inspection data
- The inspection locations and findings are plotted on a map
 - Full traceability is ensured
- All relevant findings (cracks) are reported to the client for evaluation
 - The findings are evaluated against the maximum allowable defect sizes calculated by client